Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Virol ; 98(3): e0115723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305152

RESUMO

Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cricetulus , Microscopia Crioeletrônica , Especificidade de Hospedeiro , Mesocricetus , Animais , Cricetinae , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Linhagem Celular , COVID-19/virologia , Cricetulus/metabolismo , Cricetulus/virologia , Mesocricetus/metabolismo , Mesocricetus/virologia , Mutação , Animais de Estimação/metabolismo , Animais de Estimação/virologia , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura
2.
Lancet ; 399(10329): 1070-1078, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279259

RESUMO

BACKGROUND: Transmission of SARS-CoV-2 from humans to other mammals, including pet animals, has been reported. However, with the exception of farmed mink, there is no previous evidence that these infected animals can infect humans, resulting in sustained human-to-human transmission. Following a confirmed SARS-CoV-2 infection of a pet shop worker, animals in the shop and the warehouse supplying it were tested for evidence of SARS-CoV-2 infection. METHODS: In this case study, viral swabs and blood samples were collected from animals in a pet shop and its corresponding warehouse in Hong Kong. Nasal swab or saliva samples from human COVID-19 patients epidemiologically linked to the pet shop and from subsequent local cases confirmed to be infected by SARS-CoV-2 delta variant were collected. Oral swabs were tested by quantitative RT-PCR (RT-qPCR) for SARS-CoV-2 and blood samples were serologically tested by a surrogate virus neutralisation test and plaque reduction neutralisation test. The SARS-CoV-2 RT-qPCR positive samples were sequenced by next generation viral full genome sequencing using the ISeq sequencing platform (Illumina), and the viral genomes were phylogenetically analysed. FINDINGS: Eight (50%) of 16 individually tested Syrian hamsters in the pet shop and seven (58%) of 12 Syrian hamsters in the corresponding warehouse were positive for SARS-CoV-2 infection in RT-qPCR or serological tests. None of the dwarf hamsters (n=75), rabbits (n=246), guinea pigs (n=66), chinchillas (n=116), and mice (n=2) were confirmed positive for SARS-CoV-2 in RT-qPCR tests. SARS-CoV-2 viral genomes deduced from human and hamster cases in this incident all belong to the delta variant of concern (AY.127) that had not been circulating locally before this outbreak. The viral genomes obtained from hamsters were phylogenetically related with some sequence heterogeneity. Phylogenetic dating suggests infection in these hamsters occurred around Oct 14, 2021 (95% CI Sept 15 to Nov 9, 2021). Multiple zoonotic transmission events to humans were detected, leading to onward human-to-human transmission. INTERPRETATION: Pet hamsters can be naturally infected with SARS-CoV-2. The virus can circulate among hamsters and lead to human infections. Both genetic and epidemiological results strongly suggest that there was more than one hamster-to-human transmission event in this study. This incident also led to onward human transmission. Importation of SARS-CoV-2-infected hamsters was a likely source of this outbreak. FUNDING: US National Institutes of Health, Research Grants Council of Hong Kong, Food and Health Bureau, and InnoHK.


Assuntos
COVID-19/veterinária , Cricetinae/virologia , SARS-CoV-2 , Zoonoses Virais/transmissão , Adulto , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Teste de Ácido Nucleico para COVID-19 , Criança , Surtos de Doenças , Feminino , Hong Kong/epidemiologia , Humanos , Masculino , Animais de Estimação/virologia , Filogenia
3.
Viruses ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35215913

RESUMO

Companion animals, such as cats, dogs, horses and exotic species, play an important role in society; more than 600 million cats and 900 million dogs live closely with humans worldwide [...].


Assuntos
Animais de Estimação/virologia , Viroses/veterinária , Fenômenos Fisiológicos Virais , Vírus/isolamento & purificação , Animais , Doenças do Gato/virologia , Gatos , Doenças do Cão/virologia , Cães , Doenças dos Cavalos/virologia , Cavalos , Viroses/virologia , Vírus/classificação , Vírus/genética
4.
Viruses ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216014

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have spilled over from humans to companion and wild animals since the inception of the global COVID-19 pandemic. However, whole genome sequencing data of the viral genomes that infect non-human animal species have been scant. Here, we detected and sequenced a SARS-CoV-2 delta variant (AY.3) in fecal samples from an 11-year-old domestic house cat previously exposed to an owner who tested positive for SARS-CoV-2. Molecular testing of two fecal samples collected 7 days apart yielded relatively high levels of viral RNA. Sequencing of the feline-derived viral genomes showed the two to be identical, and differing by between 4 and 14 single nucleotide polymorphisms in pairwise comparisons to human-derived lineage AY.3 sequences collected in the same geographic area and time period. However, several mutations unique to the feline samples reveal their divergence from this cohort on phylogenetic analysis. These results demonstrate continued spillover infections of emerging SARS-CoV-2 variants that threaten human and animal health, as well as highlight the importance of collecting fecal samples when testing for SARS-CoV-2 in animals. To the authors' knowledge, this is the first published case of a SARS-CoV-2 delta variant in a domestic cat in the United States.


Assuntos
COVID-19/veterinária , Fezes/virologia , Animais de Estimação/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/transmissão , COVID-19/virologia , Gatos , Feminino , Genoma Viral/genética , Humanos , Filogenia , RNA Viral/genética , SARS-CoV-2/classificação , Estados Unidos , Sequenciamento Completo do Genoma
5.
Virus Res ; 310: 198673, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998863

RESUMO

This study aimed to investigate the prevalence of COVID-19 in domestic cats, focusing on the disease in the northwest of Iran and then showing the natural transmission of SARS-COV-2 circulating between domestic cats and humans. After receiving ethic codes from Tehran University of Medical Sciences (IR.TUMS.VCR.REC.1399.303) and confirmed by the Center of Communicable Diseases Control (CDC) of Iran, 124 domestic cats were collected from the homes and only one hospital of Meshkin -Shahr district from northwestern Iran where SARS-CoV-2 patients were hospitalized and quarantined during 2020. Samples were prepared from fluid materials of oropharynx and nasopharynx. All samples were tested by real-time PCR (RT-PCR) using specific genes N and ORF1ab in Pasteur Institute of Iran, and then partial sequence analyses of S gene were performed. All collected cats were kept in separated cages until SARS-COV-2 infection was confirmed with the RT-PCR. RT- PCR Ct values of 123 collected cats were ≥40; thus, all of them showed negative results, but one of the collected cats with close contact with its owner, whom confirmed SARS-CoV-2 showed positive results with gene N(Ct=30) and gene ORF1ab (Ct=32). Furthermore, the positive pet cat showed respiratory and gastro-intestinal clinical manifestations, and its owner was infected with SARS-CoV-2 two weeks ago. Cats are susceptible animals to SARS-CoV-2 infection. Epidemiological evidence showed that SARS-COV-2 is able to transmit to healthy cats due to having close contact with its owner as a reverse zoonosis.


Assuntos
COVID-19 , Gatos , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Gatos/virologia , Humanos , Irã (Geográfico)/epidemiologia , Nasofaringe/virologia , Orofaringe/virologia , Animais de Estimação/virologia , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação
6.
Comput Biol Chem ; 96: 107613, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896769

RESUMO

Coronavirus Disease 2019 (COVID-19) is an ongoing global health emergency that has caused tremendous stress and loss of life worldwide. The viral spike glycoprotein is a critical molecule mediating transmission of SARS-CoV-2 by interacting with human ACE2. However, through the course of the pandemics, there has not been a thorough analysis of the spike protein mutations, and on how these mutants influence the transmission of SARS-CoV-2. Besides, cases of SARS-CoV-2 infection among pets and wild animals have been reported, so the susceptibility of these animals requires great attention to investigate, as they may also link to the renewed question of a possible intermediate host for SARS-CoV-2 before it was transmitted to humans. With over 226,000 SARS-CoV-2 sequences obtained, we found 1573 missense mutations in the spike gene, and 226 of them were within the receptor-binding domain (RBD) region that directly interacts with human ACE2. Modeling the interactions between SARS-CoV-2 spike mutants and ACE2 molecules showed that most of the 74 missense mutations in the RBD region of the interaction interface had little impact on spike binding to ACE2, whereas several within the spike RBD increased the binding affinity toward human ACE2 thus making the virus likely more contagious. On the other hand, modeling the interactions between animal ACE2 molecules and SARS-CoV-2 spike revealed that many pets and wild animals' ACE2 had a variable binding ability. Particularly, ACE2 of bamboo rat had stronger binding to SARS-CoV-2 spike protein, whereas that of mole, vole, Mus pahari, palm civet, and pangolin had a weaker binding compared to human ACE2. Our results provide structural insights into the impact on interactions of the SARS-CoV-2 spike mutants to human ACE2, and shed light on SARS-CoV-2 transmission in pets and wild animals, and possible clues to the intermediate host(s) for SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/veterinária , COVID-19/virologia , Mutação de Sentido Incorreto , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , Animais Selvagens/genética , Animais Selvagens/virologia , COVID-19/transmissão , Biologia Computacional , Interações entre Hospedeiro e Microrganismos/genética , Especificidade de Hospedeiro/genética , Humanos , Simulação de Dinâmica Molecular , Pandemias/veterinária , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Animais de Estimação/genética , Animais de Estimação/virologia , Domínios e Motivos de Interação entre Proteínas/genética , Fatores de Risco
7.
Viruses ; 13(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960795

RESUMO

Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.


Assuntos
COVID-19/veterinária , Doenças do Cão/virologia , SARS-CoV-2/isolamento & purificação , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , Doenças do Cão/diagnóstico , Doenças do Cão/transmissão , Cães , Feminino , Genoma Viral/genética , Animais de Estimação/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Zoonoses Virais/diagnóstico , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716263

RESUMO

SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell-expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.


Assuntos
COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , Seleção Genética , Animais , COVID-19/veterinária , Gatos , Chlorocebus aethiops , Cães , Furões , Frequência do Gene , Animais de Estimação/virologia , SARS-CoV-2/patogenicidade , Células Vero , Proteínas Virais/genética
9.
Virulence ; 12(1): 2777-2786, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696707

RESUMO

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Assuntos
Animais Domésticos/virologia , Animais Selvagens/virologia , Animais de Zoológico/virologia , COVID-19/veterinária , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Vacinas contra COVID-19 , Reservatórios de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Furões/virologia , Humanos , Prevalência , Zoonoses Virais/epidemiologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia
10.
Viruses ; 13(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578341

RESUMO

Despite the probable zoonotic origin of SARS-CoV-2, only limited research efforts have been made to understand the role of companion animals in SARS-CoV-2 epidemiology. According to recent serological prevalence studies, human-to-companion animal transmission is quite frequent, which led us to consider that the risk of SARS-CoV-2 transmission from animal to human, albeit negligible in the present context, may have been underestimated. In this study, we provide the results of a prospective survey that was conducted to evaluate the SARS-CoV-2 isolation rate by qRT-PCR in dogs and cats with different exposure risks and clinical statuses. From April 2020 to April 2021, we analyzed 367 samples and investigated the presence of SARS-CoV-2 RNA using qRT-PCR. Only four animals tested positive, all of them being cats. Three cats were asymptomatic and one presented a coryza-like syndrome. We describe in detail the infection in two cats and the associated clinical characteristics. Importantly, we obtained SARS-CoV-2 genomes from one infected animal and characterized them as Alpha variants. This represents the first identification of the SARS-CoV-2 Alpha variant in an infected animal in France.


Assuntos
COVID-19/veterinária , Doenças do Gato/virologia , Doenças do Cão/virologia , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/epidemiologia , Cães , França/epidemiologia , Humanos , Masculino , Animais de Estimação/virologia , Prevalência , Estudos Prospectivos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real/veterinária , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , Eliminação de Partículas Virais
11.
Viruses ; 13(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578394

RESUMO

Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Animais de Estimação/virologia , SARS-CoV-2 , Animais , COVID-19/história , COVID-19/transmissão , Gatos , Cães , Características da Família , História do Século XXI , Humanos , Animais de Estimação/história , Filogenia , Vigilância da População , RNA Viral , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estudos Soroepidemiológicos , Utah/epidemiologia , Zoonoses Virais/epidemiologia , Wisconsin/epidemiologia
12.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372563

RESUMO

The epidemiological role of domestic animals in the spread and transmission of SARS-CoV-2 to humans has been investigated in recent reports, but some aspects need to be further clarified. To date, only in rare cases have dogs and cats living with COVID-19 patients been found to harbour SARS-CoV-2, with no evidence of pet-to-human transmission. The aim of the present study was to verify whether dogs and cats act as passive mechanical carriers of SARS-CoV-2 when they live in close contact with COVID-19 patients. Cutaneous and interdigital swabs collected from 48 dogs and 15 cats owned by COVID-19 patients were tested for SARS-CoV-2 by qRT-PCR. The time elapsed between owner swab positivity and sample collection from pets ranged from 1 to 72 days, with a median time of 23 days for dogs and 39 days for cats. All samples tested negative, suggesting that pets do not passively carry SARS-CoV-2 on their hair and pads, and thus they likely do not play an important role in the virus transmission to humans. This data may contribute to confirming that the direct contact with the hair and pads of pets does not represent a route for the transmission of SARS-CoV-2.


Assuntos
COVID-19/veterinária , Doenças do Gato/virologia , Doenças do Cão/virologia , Cabelo/virologia , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação , Pele/virologia , Animais , COVID-19/transmissão , Doenças do Gato/transmissão , Gatos , Doenças do Cão/transmissão , Cães , Humanos
13.
Adv Virus Res ; 110: 59-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34353482

RESUMO

Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.


Assuntos
COVID-19/veterinária , SARS-CoV-2/fisiologia , Animais , Animais Selvagens/virologia , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Suscetibilidade a Doenças/diagnóstico , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Especificidade de Hospedeiro , Gado/virologia , Modelos Animais , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação
14.
Viruses ; 13(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208484

RESUMO

Pets play a crucial role in the development of human feelings, social life, and care. However, in the era of the prevailing global pandemic of COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many questions addressing the routes of the virus spread and transmission to humans are dramatically emerging. Although cases of SARS-CoV-2 infection have been found in pets including dogs, cats, and ferrets, to date there is no strong evidence for pet-to-human transmission or sustained pet-to-pet transmission of SARS-CoV-2. However, an increasing number of studies reporting detection of SARS-CoV-2 in farmed minks raises suspicion of potential viral transmission from these animals to humans. Furthermore, due to the high susceptibility of cats, ferrets, minks and hamsters to COVID-19 infection under natural and/or experimental conditions, these animals have been extensively explored as animal models to study the SARS-CoV-2 pathogenesis and transmission. In this review, we present the latest reports focusing on SARS-CoV-2 detection, isolation, and characterization in pets. Moreover, based on the current literature, we document studies aiming to broaden the knowledge about pathogenicity and transmissibility of SARS-CoV-2, and the development of viral therapeutics, drugs and vaccines. Lastly, considering the high rate of SARS-CoV-2 evolution and replication, we also suggest routes of protection against the virus.


Assuntos
COVID-19/transmissão , Animais de Estimação/virologia , SARS-CoV-2/patogenicidade , Zoonoses/transmissão , Zoonoses/virologia , Animais , COVID-19/prevenção & controle , Gatos/virologia , Cães/virologia , Fazendas , Furões/virologia , Humanos , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
15.
Viruses ; 13(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069453

RESUMO

Understanding the ecological and epidemiological roles of pets in the transmission of SARS-CoV-2 is critical for animal and human health, identifying household reservoirs, and predicting the potential enzootic maintenance of the virus. We conducted a longitudinal household transmission study of 76 dogs and cats living with at least one SARS-CoV-2-infected human in Texas and found that 17 pets from 25.6% of 39 households met the national case definition for SARS-CoV-2 infections in animals. This includes three out of seventeen (17.6%) cats and one out of fifty-nine (1.7%) dogs that were positive by RT-PCR and sequencing, with the virus successfully isolated from the respiratory swabs of one cat and one dog. Whole-genome sequences of SARS-CoV-2 obtained from all four PCR-positive animals were unique variants grouping with genomes circulating among people with COVID-19 in Texas. Re-sampling showed persistence of viral RNA for at least 25 d-post initial test. Additionally, seven out of sixteen (43.8%) cats and seven out of fifty-nine (11.9%) dogs harbored SARS-CoV-2 neutralizing antibodies upon initial sampling, with relatively stable or increasing titers over the 2-3 months of follow-up and no evidence of seroreversion. The majority (82.4%) of infected pets were asymptomatic. 'Reverse zoonotic' transmission of SARS-CoV-2 from infected people to animals may occur more frequently than recognized.


Assuntos
COVID-19/epidemiologia , COVID-19/veterinária , Animais de Estimação/virologia , Animais , Anticorpos Neutralizantes/imunologia , Doenças do Gato/epidemiologia , Doenças do Gato/imunologia , Doenças do Gato/virologia , Gatos/virologia , Doenças do Cão/epidemiologia , Doenças do Cão/imunologia , Doenças do Cão/virologia , Cães/virologia , Humanos , Estudos Longitudinais , Animais de Estimação/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Texas/epidemiologia
16.
Virulence ; 12(1): 1597-1609, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125647

RESUMO

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is continuing to spread globally. SARS-CoV-2 infections of feline and canine species have also been reported. However, it is not entirely clear to what extent natural SARS-CoV-2 infection of pet dogs and cats is in households. We have developed enzyme-linked immunosorbent assays (ELISAs) using recombinant SARS-CoV-2 nucleocapsid (N) protein and the receptor-binding-domain (RBD) of the spike protein, and the SARS-CoV-2 spike-pseudotyped vesicular stomatitis virus (VSV)-based neutralization assay to screen serum samples of 239 pet cats and 510 pet dogs in Minnesota in the early phase of the COVID-19 pandemic from mid-April to early June 2020 for evidence of SARS-CoV-2 exposures. A cutoff value was used to identify the seropositive samples in each experiment. The average seroprevalence of N- and RBD-specific antibodies in pet cats were 8% and 3%, respectively. Among nineteen (19) N-seropositive cat sera, fifteen (15) exhibited neutralizing activity and seven (7) were also RBD-seropositive. The N-based ELISA is also specific and does not cross react with antigens of common feline coronaviruses. In contrast, SARS-CoV-2 antibodies were detected at a very low percentage in pet dogs (~ 1%) and were limited to IgG antibodies against SARS-CoV-2 N protein with no neutralizing activities. Our results demonstrate that SARS-CoV-2 seropositive rates are higher in pet cats than in pet dogs in MN early in the pandemic and that SARS-CoV-2 N-specific IgG antibodies can detect SARS-CoV-2 infections in companion animals with higher levels of specificity and sensitivity than RBD-specific IgG antibodies in ELISA-based assays.


Assuntos
Teste Sorológico para COVID-19/veterinária , COVID-19/veterinária , Animais de Estimação/virologia , SARS-CoV-2/isolamento & purificação , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Gatos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Coronavirus Felino/imunologia , Coronavirus Felino/isolamento & purificação , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Minnesota/epidemiologia , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Viruses ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802123

RESUMO

In New York State, domestic animals are no longer considered rabies vector species, but given their ubiquity with humans, rabies cases in dogs and cats often result in multiple individuals requiring post-exposure prophylaxis. For over a decade, the New York State rabies laboratory has variant-typed these domestic animals to aid in epidemiological investigations, determine exposures, and generate demographic data. We produced a data set that outlined vaccination status, ownership, and rabies results. Our data demonstrate that a large percentage of felines submitted for rabies testing were not vaccinated or did not have a current rabies vaccination, while canines were largely vaccinated. Despite massive vaccination campaigns, free clinics, and education, these companion animals still occasionally contract rabies. Barring translocation events, we note that rabies-positive cats and dogs in New York State have exclusively contracted a raccoon variant. While the United States has made tremendous strides in reducing its rabies burden, we hope these data will encourage responsible pet ownership including rabies vaccinations to reduce unnecessary animal mortality, long quarantines, and post-exposure prophylaxis in humans.


Assuntos
Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Vacinação em Massa/estatística & dados numéricos , Raiva/epidemiologia , Raiva/veterinária , Animais , Doenças do Gato/virologia , Gatos , Doenças do Cão/virologia , Cães , Programas de Imunização , Vacinação em Massa/veterinária , New York/epidemiologia , Animais de Estimação/virologia , Profilaxia Pós-Exposição , Raiva/prevenção & controle , Vacina Antirrábica/uso terapêutico , Guaxinins/virologia
18.
Viruses ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801789

RESUMO

Seoul virus (SEOV) is a zoonotic orthohantavirus carried by rats. In humans, SEOV can cause hemorrhagic fever with renal syndrome. Recent human SEOV cases described in the USA, United Kingdom, France and the Netherlands were associated with contact with pet or feeder rats. The prevalence of SEOV in these types of rats is unknown. We collected 175 pet and feeder rats (Rattus norvegicus) from private owners, ratteries and commercial breeders/traders in the Netherlands. Lung tissue of the rats was tested using a SEOV real-time RT-qPCR and heart fluid was tested for the presence of antibodies against SEOV. In all three investigated groups, RT-qPCR-positive rats were found: in 1/29 rats from private owners (3.6%), 2/56 rats from ratteries (3.4%) and 11/90 rats from commercial breeders (12.2%). The seroprevalence was largely similar to the prevalence calculated from RT-qPCR-positive rats. The SEOV sequences found were highly similar to sequences previously found in domesticated rats in Europe. In conclusion, SEOV is spread throughout different populations of domesticated rats.


Assuntos
Febre Hemorrágica com Síndrome Renal/epidemiologia , Doenças dos Roedores/epidemiologia , Vírus Seoul/isolamento & purificação , Animais , Febre Hemorrágica com Síndrome Renal/transmissão , Febre Hemorrágica com Síndrome Renal/virologia , Humanos , Técnicas de Diagnóstico Molecular , Países Baixos/epidemiologia , Animais de Estimação/virologia , Prevalência , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Roedores/virologia , Vírus Seoul/genética , Estudos Soroepidemiológicos , Inquéritos e Questionários , Carga Viral
19.
PLoS One ; 16(4): e0250853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909706

RESUMO

BACKGROUND: Infection by SARS-CoV-2 in domestic animals has been related to close contact with humans diagnosed with COVID-19. Objectives: To assess the exposure, infection, and persistence by SARS-CoV-2 of dogs and cats living in the same households of humans that tested positive for SARS-CoV-2, and to investigate clinical and laboratory alterations associated with animal infection. METHODS: Animals living with COVID-19 patients were longitudinally followed and had nasopharyngeal/oropharyngeal and rectal swabs collected and tested for SARS-CoV-2. Additionally, blood samples were collected for laboratory analysis, and plaque reduction neutralization test (PRNT90) to investigate specific SARS-CoV-2 antibodies. RESULTS: Between May and October 2020, 39 pets (29 dogs and 10 cats) of 21 patients were investigated. Nine dogs (31%) and four cats (40%) from 10 (47.6%) households were infected with or seropositive for SARS-CoV-2. Animals tested positive from 11 to 51 days after the human index COVID-19 case onset of symptoms. Three dogs tested positive twice within 14, 30, and 31 days apart. SARS-CoV-2 neutralizing antibodies were detected in one dog (3.4%) and two cats (20%). In this study, six out of thirteen animals either infected with or seropositive for SARS-CoV-2 have developed mild but reversible signs of the disease. Using logistic regression analysis, neutering, and sharing bed with the ill owner were associated with pet infection. CONCLUSIONS: The presence and persistence of SARS-CoV-2 infection have been identified in dogs and cats from households with human COVID-19 cases in Rio de Janeiro, Brazil. People with COVID-19 should avoid close contact with their pets during the time of their illness.


Assuntos
COVID-19/epidemiologia , COVID-19/veterinária , Animais de Estimação/virologia , Animais , Animais Domésticos/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Brasil/epidemiologia , Doenças do Gato , Gatos , Doenças do Cão , Cães , Estudos Longitudinais , Prevalência , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...